欢迎光临杨雨的个人博客站!

杨雨个人网站-杨雨个人博客-杨照佳

杨雨个人博客网站

关注互联网和搜索引擎的个人博客网站

首页 > WEB开发 > Python教程 >

python能做什么科学计算

发布时间:2019-07-01  编辑:杨雨个人博客网站   点击:   

python做科学计算的特点:

python能做什么科学计算

1. 科学库很全。(推荐学习:Python视频教程

科学库:numpy,scipy。作图:matplotlib。并行:mpi4py。调试:pdb。

2. 效率高。

如果你能学好numpy(array特性,f2py),那么你代码执行效率不会比fortran,C差太多。但如果你用不好array,那样写出来的程序效率就只能呵呵了。所以入门后,请一定花足够多的时间去了解numpy的array类。

3. 易于调试。

pdb是我见过最好的调试工具,没有之一。直接在程序断点处给你一个截面,这只有文本解释语言才能办到。毫不夸张的说,你用python开发程序只要fortran的1/10时间。

4. 其他。

它丰富而且统一,不像C++的库那么杂(好比linux的各种发行版),python学好numpy就可以做科学计算了。python的第三方库很全,但是不杂。python基于类的语言特性让它比起fortran等更加容易规模化开发。

数值分析中,龙格-库塔法(Runge-Kutta methods)是用于非线性常微分方程的解的重要的一类隐式或显式迭代法。这些技术由数学家卡尔·龙格和马丁·威尔海姆·库塔于1900年左右发明。

龙格-库塔(Runge-Kutta)方法是一种在工程上应用广泛的高精度单步算法,其中包括著名的欧拉法,用于数值求解微分方程。由于此算法精度高,采取措施对误差进行抑制,所以其实现原理也较复杂。

高斯积分是在概率论和连续傅里叶变换等的统一化等计算中有广泛的应用。在误差函数的定义中它也出现。虽然误差函数没有初等函数,但是高斯积分可以通过微积分学的手段解析求解。高斯积分(Gaussian integral),有时也被称为概率积分,是高斯函数的积分。它是依德国数学家兼物理学家卡尔·弗里德里希·高斯之姓氏所命名。

洛伦茨吸引子及其导出的方程组是由爱德华·诺顿·洛伦茨于1963年发表,最初是发表在《大气科学杂志》(Journal of the Atmospheric Sciences)杂志的论文《Deterministic Nonperiodic Flow》中提出的,是由大气方程中出现的对流卷方程简化得到的。

这一洛伦茨模型不只对非线性数学有重要性,对于气候和天气预报来说也有着重要的含义。行星和恒星大气可能会表现出多种不同的准周期状态,这些准周期状态虽然是完全确定的,但却容易发生突变,看起来似乎是随机变化的,而模型对此现象有明确的表述。

更多Python相关技术文章,请访问Python教程栏目进行学习! 本文地址:http://itbyc.com/Python/22267.html
转载请注明出处。

分享是一种快乐,也是一种美德:
博客首页 | WEB开发 | 网站运营 | CMS使用教程 滇ICP备14002061号-1